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ABSTRACT
The paper considers the problem of testing for normality of the one-
dimensional marginal distribution of a strictly stationary and weakly
dependent stochastic process. The possibility of using an autoregressive
sieve bootstrap procedure to obtain critical values and P-values for
normality tests is explored. The small-sample properties of a variety
of tests are investigated in an extensive set of Monte Carlo experiments.
The bootstrap version of the classical skewness–kurtosis test is shown
to have the best overall performance in small samples.
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1. Introduction

The problem of testing whether a sample of observations comes from a Gaussian distribution
has attracted considerable attention over the years. This is not perhaps surprising in view of
the fact that normality is a common maintained assumption in a wide variety of statistical
procedures, including estimation, inference, and forecasting procedures. In the context of
model building, a test for normality is often a useful diagnostic for assessing whether a
particular type of stochastic model may provide an appropriate characterization of the data
(for instance, non-linear models are unlikely to be an adequate approximation to a time series
having a Gaussian one-dimensional marginal distribution). Normality tests may also be useful
in evaluating the validity of different hypotheses and models to the extent that the latter rely
on or imply Gaussianity, as is the case, for example, with some option pricing, asset pricing,
and dynamic stochastic general equilibrium models found in the economics and finance
literature. Other examples where normality or otherwise of the marginal distribution is of
interest, include value-at-risk calculations (e.g., Cotter 2007), and copula-based modelling
for multivariate time series with the marginal distribution and the copula function being
specified separately. Kilian and Demiroglu (2000) and Bontemps and Meddahi (2005) give
further examples where testing for normality is of interest.

Although most of the literature on tests for normality has focused on the case of indepen-
dent and identically distributed (i.i.d.) observations (see Thode 2002 for an extensive review),
a number of tests which are valid for dependent data have also been proposed. These include
tests based on empirical standardized cumulants (Lobato and Velasco 2004; Bai and Ng 2005),
moment conditions of various types (e.g., Epps 1987; Moulines and Choukri 1996; Bontemps
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and Meddahi 2005), the bispectral density function (e.g., Hinich 1982; Nusrat and Harvill
2008; Berg, Paparoditis, and Politis 2010), and the empirical distribution function (Psaradakis
and Vávra 2017). Unlike normality tests for i.i.d. observations, whose finite-sample behaviour
has been extensively studied (see, inter alia, Baringhaus, Danschke, and Henze 1989; Romão,
Delgado, and Costa 2010; Yap and Sim 2011), a similar comparison, across a common set of
data-generating mechanisms, of tests designed for dependent data is not currently available
in the literature.

Our aim in this paper is twofold. First, we wish to investigate the small-sample size and
power properties of tests for normality of the one-dimensional marginal distribution of a
strictly stationary time series. The tests under consideration are some of those mentioned in
the previous paragraph, as well as tests that rely on the empirical characteristic function of the
data and on order statistics. Second, since in the presence of serial dependence conventional
large-sample approximations to the null distributions of some of the test statistics under
consideration are inaccurate, unknown, or depend on the correlation structure of the data
in complicated ways, we wish to investigate the possibility of using bootstrap resampling to
implement tests of normality. More specifically, we consider estimating the null sampling
distributions of the test statistics of interest by means of the so-called autoregressive sieve
bootstrap, and thus obtain P-values and/or critical values for normality tests. The boot-
strap method is based on the idea of approximating the data-generating mechanism by an
autoregressive sieve, that is, a sequence of autoregressive models the order of which increases
with the sample size (e.g., Kreiss 1992; Bühlmann 1997). Bootstrap-based normality tests
are straightforward to implement and, as our simulation experiments demonstrate, offer
significant improvements over asymptotic tests, that is, tests that use critical values from the
large-sample null distributions of the relevant test statistics.

The remainder of the paper is organized as follows. Sec. 2 provides an overview of the
normality tests of interest. Sec. 3 discusses how the autoregressive sieve bootstrap may be
used to implement tests for normality of dependent data. Sec. 4 examines the small-sample
properties of asymptotic and bootstrap-based normality tests by means of Monte Carlo
simulations. Sec. 5 summarizes and concludes.

2. Problem and tests

2.1. Statement of the problem

Suppose that (X1, X2, . . . , Xn) are n consecutive observations from a strictly stationary, real-
valued, discrete-time stochastic process X = {Xt}∞t=−∞ having mean μX = E(Xt) and
variance σ 2

X = E[(Xt − μX)2] > 0. It is assumed that X is weakly dependent, in
the sense that its autocovariance sequence decays towards zero sufficiently fast so that the
series

∑∞
τ=0 Cov(Xt , Xt−τ ) converges absolutely (and, consequently, X has a continuous and

bounded spectral density). The problem of interest is to test the composite null hypothesis
that the one-dimensional marginal distribution of X is Gaussian, that is,

H0 : (Xt − μX)/σX ∼ N (0, 1) (1)

where a tilde ‘∼’ means ‘is distributed as’. The alternative hypothesis is that the distribution
of Xt is non-Gaussian.
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2.2. Tests based on skewness and kurtosis

Bowman and Shenton (1975) and Jarque and Bera (1987) proposed a test for normality
based on the empirical standardized third and fourth cumulants, exploiting the fact that for a
normal distribution all cumulants of order higher than the second are zero. The test statistic is
given by

JB = nμ̂2
3

6μ̂3
2

+ n(μ̂4 − 3μ̂2
2)

2

24μ̂4
2

(2)

where, for an integer r � 2, μ̂r = (1/n)
∑n

t=1(Xt−X̄)r and X̄ = (1/n)
∑n

t=1 Xt . For Gaussian
i.i.d. data, JB is approximately χ2

2 distributed for large n. Although a test which rejects when
JB exceeds an appropriate quantile of the χ2

2 distribution is clearly not guaranteed to have
correct asymptotic level in the presence of serial dependence, it is arguably the most popular
normality test in the literature and is available in many statistical and econometric packages
(e.g., EViews, Matlab, Stata). It will, thus, serve as a benchmark for comparisons in our study.

Bai and Ng (2005) developed a related test which allows for weak dependence in the data.
The test is based on the statistic

BN = nμ̂2
3

ζ̂3μ̂
3
2

+ n(μ̂4 − 3μ̂2
2)

2

ζ̂4μ̂
4
2

(3)

where ζ̂3 and ζ̂4 are consistent estimators of the asymptotic variance of
√

nμ̂
−3/2
2 μ̂3 and√

nμ̂−2
2 (μ̂4 − 3μ̂2

2), respectively. Following Bai and Ng (2005), ζ̂3 and ζ̂4 are constructed
using a non-parametric kernel estimator of the relevant long-run covariance matrices; the
triangular Bartlett kernel and a data-dependent bandwidth, selected according to the method
of Andrews (1991), are used.

An alternative test, also based on skewness and kurtosis, was proposed by Lobato and
Velasco (2004). The test statistic is defined as

LV = nμ̂2
3

6Ĝ3
+ n(μ̂4 − 3μ̂2

2)
2

24Ĝ4
(4)

where Ĝr = ∑n−1
τ=1−n γ̂ r

τ for r = 3, 4 and γ̂τ = (1/n)
∑n

t=|τ |+1(Xt − X̄)(Xt−|τ | − X̄) for
τ = 0, ±1, . . . , ±(n − 1). An advantage of the test based on LV is that the estimators of the
asymptotic variance of

√
nμ̂3 and

√
n(μ̂4−3μ̂2

2) used do not involve any kernel smoothing or
truncation (in contrast to the estimators ζ̂3 and ζ̂4 used in the case of BN). If X is a Gaussian
process, BN and LV are approximately χ2

2 distributed for large n.

2.3. Test based on moment conditions

Bontemps and Meddahi (2005) proposed a test based on moment conditions implied by the
characterization of the normal distribution given in Stein (1972). The test is based on the
statistic

BM =
(

1√
n

n∑
t=1

ĝt

)
�̂−1

(
1√
n

n∑
t=1

ĝ′
t

)
(5)

where ĝt = (h3(Zt), . . . , h�(Zt)) for some integer � � 3, Zt = {nμ̂2/(n − 1)}−1/2(Xt − X̄),
and �̂ is a consistent estimator of the long-run covariance matrix of {ĝt}. Here, hm(·) stands
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for the normalized Hermite polynomial of degree m, given by

hm(x) = √
m!

�m/2�∑
i=0

(−1)ixm−2i

i!(m − 2i)!2i , −∞ < x < ∞, m = 0, 1, 2, . . .

where �a� denotes the largest integer not greater than a. UnderH0, BM is approximately χ2
�−2

distributed for large n.
As in the case of the BN statistic, �̂ is constructed using a Bartlett-kernel estimator with a

data-dependent bandwidth chosen by the method of Andrews (1991). In light of the relatively
poor small-sample size properties of the test reported in Bontemps and Meddahi (2005) for
dependent data when Hermite polynomials of degree higher than 4 are used, we set � = 4 in
our implementation of the test.

2.4. Tests based on the empirical distribution function

Psaradakis and Vávra (2017) considered a test based on the Anderson–Darling distance
statistic involving the weighted quadratic distance of the empirical distribution function of
the data from a Gaussian distribution function. Putting Yt = μ̂

−1/2
2 (Xt − X̄), the test rejects

H0 for large values of the statistic

AD = n
∫ ∞

−∞
{F̂Y(y) − 	(y)}2

	(y){1 − 	(y)} d	(y)

= −n − 1
n

n∑
t=1

(2t − 1) [log 	(Y(t)) + log{1 − 	(Y(n+1−t))}] (6)

where F̂Y is the empirical distribution function of (Y1, . . . , Yn), Y(1) � · · · � Y(n) are
the order statistics of (Y1, . . . , Yn), and 	 is the standard normal distribution function. In
the sequel, we also consider tests which reject H0 for large values of the Cramér–von Mises
statistic

CM = n
∫ ∞

−∞
{F̂Y(y) − 	(y)}2d	(y) = 1

12n
+

n∑
t=1

(
	(Y(t)) − 2t − 1

2n

)2
(7)

or the Kolmogorov–Smirnov statistic

KS = √
n sup

−∞<y<∞
|F̂Y(y) − 	(y)|

= √
n max

1�t�n

{
t
n

− 	(Y(t)), 	(Y(t)) − t − 1
n

, 0
}

(8)

Since the asymptotic null distributions of these statistics have a rather complicated struc-
ture in the case of a composite null hypothesis even under i.i.d. conditions (cf. Durbin 1973;
Stephens 1976), critical values and/or P-values for the tests will be obtained by a suitable
bootstrap procedure. Stute, Gonzáles Manteiga, and Presedo Quindimil (1993), Babu and
Rao (2004), and Kojadinovic and Yan (2012) also considered bootstrap-based approaches to
testing composite hypotheses for i.i.d. data, while Psaradakis and Vávra (2017) examined the
case of linear processes that may exhibit strong, weak, or negative dependence.
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2.5. Test based on the empirical characteristic function

Epps and Pulley (1983) proposed a class of tests based on the weighted quadratic distance
of the empirical characteristic function of the data from its pointwise limit under the null
hypothesis of normality. Using the density of theN (0, 1/μ̂2) distribution as a weight function
(cf. Epps and Pulley 1983), the test rejects H0 for large values of the statistic

EP = n
∫ ∞

−∞
∣∣ϕ̂Y(u) − ϕ(u)

∣∣2 d	(μ̂
1/2
2 u)

= n√
3

+ 1
n

n∑
t=1

n∑
s=1

exp
{− 1

2 (Yt − Ys)
2} − √

2
n∑

t=1
exp

(− 1
4 Y2

t
)

(9)

where ϕ̂Y is the empirical characteristic function of (Y1, . . . , Yn) and ϕ is the characteristic
function of 	.

For Gaussian i.i.d. data, EP is asymptotically distributed as a weighted sum of infinitely
many independent χ2

1 random variables (Baringhaus and Henze 1988). To the best of
our knowledge, the asymptotic distribution of EP has not been established in the case of
dependent data. We will use a bootstrap procedure to obtain critical and/or P-values for
the test based on EP. We note that, in an i.i.d. context, Jiménez-Gamero, Muñoz-García, and
Pino-Mejías (2003) and Leucht and Neumann (2009) examined bootstrap-based inference for
statistics (such as EP, AD, and CM) which may be expressed in the form of, or be approximated
by, degenerate V-statistics involving estimated parameters. Leucht (2012) and Leucht and
Neumann (2013) give related results for weakly dependent data.

2.6. Test based on order statistics

Shapiro and Wilk (1965) proposed a test based on the regression of the order statistics of the
data on the expected values of order statistics in a sample of the same size from the standard
normal distribution. The test rejects H0 for small values of the statistic

SW = 1
nμ̂2

( n∑
t=1

atX(t)

)2

(10)

where X(1) � · · · � X(n) are the order statistics of (X1, . . . , Xn) and (a1, . . . , an) are constants
such that (n − 1)−1/2 ∑n

t=1 atX(t) is best linear unbiased estimator of σX under Eq. (1). For
Gaussian i.i.d. data, SW (suitably normalized) is asymptotically distributed as a weighted
sum of infinitely many independent and centred χ2

1 random variables (Leslie, Stephens, and
Fotopoulos 1986).

One difficulty with a test based on SW is that exact or approximate values of the coefficients
(a1, . . . , an) are known only under i.i.d. conditions. In the sequel, we use the approximation
method suggested by Royston (1992) to compute these coefficients, while critical values
and/or P-values for the test are obtained by means of a bootstrap procedure.

2.7. Test based on the bispectrum

Hinich (1982) proposed a test for Gaussianity of a stochastic process based on its normalized
bispectrum, exploiting the fact that the latter should be identically zero at all frequency pairs
if the process is Gaussian. For some integer k � 1, the test used in the sequel is based on the
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statistic

H = 2πn
δM2

k∑
i=1

|f̂b(ω1,i, ω2,i)|2
f̂s(ω1,i)f̂s(ω2,i)f̂s(ω1,i + ω2,i)

(11)

where f̂s and f̂b are kernel-smoothed estimators of the spectral and bispectral density, respec-
tively, of X , M is a bandwidth parameter associated with f̂b, δ is a normalizing constant
associated with f̂b, and �k = {(ω1,i, ω2,i), i = 1, . . . , k} is a set of frequency pairs contained
in � = {(ω1, ω2) : 0 � ω1 � π , 0 � ω2 � min{ω1, 2(π − ω1)}} (see Berg, Paparoditis,
and Politis (2010) for more details). If X is a Gaussian process, then H is approximately χ2

2k
distributed for large n.

In the sequel, we follow Berg, Paparoditis, and Politis (2010) in taking �k to be a subset
of the grid of points contained in their Fig. 2, as well as in using a trapezoidal flat–top kernel
function and a right-pyramidal frustrum-shaped kernel function to construct the estimators
f̂s and f̂b, respectively. A common bandwidth M = �n1/3� is used for f̂s and f̂b, and we set k =
�n/10�. We note that Berg, Paparoditis, and Politis (2010) considered using an autoregressive
sieve bootstrap approximation to the null distribution of H as an alternative to the χ2

2k large-
sample approximation. Also note that, unlike the testing procedures discussed previously,
which assess normality of the one-dimensional marginal distribution of X , the test based on
H assesses Gaussianity of the process X (i.e., normality of all finite-dimensional distributions
of X ).

3. Bootstrap tests

Some of the normality tests described in Sec. 2, although asymptotically valid for dependent
data, tend to suffer from substantial level distortion in finite samples (e.g., the bispectrum-
based test). For some other tests, large-sample approximations to the null distribution of
the relevant test statistic may not be straightforward to obtain because of the dependence in
the data and the composite null hypothesis (e.g., tests based on the empirical distribution
function, the empirical characteristic function, or order statistics). A convenient way of
overcoming these difficulties is to use a suitable bootstrap procedure to approximate the
sampling distribution of the test statistic of interest under the null hypothesis. In this paper,
we propose to use the autoregressive sieve bootstrap to obtain such an approximation and
construct bootstrap tests for normality.

The typical assumption underlying the autoregressive sieve bootstrap is that X admits the
representation

Xt − μX =
∞∑

j=1
φj(Xt−j − μX) + εt (12)

where {φj}∞j=1 is an absolutely summable sequence of real numbers and {εt}∞t=−∞ are i.i.d.,
real-valued, zero-mean random variables with finite, positive variance. The idea is to approx-
imate Eq. (12) by a finite-order autoregressive model, the order of which increases simul-
taneously with the sample size at an appropriate rate, and use this model as the basis of a
semi-parametric bootstrap scheme (see, inter alia, Kreiss 1992; Paparoditis 1996; Bühlmann
1997; Choi and Hall 2000; Kreiss, Paparoditis, and Politis 2011).
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Note that, under the additional assumption that the function φ(z) = 1−∑∞
j=1 φjzj has no

zeros inside or on the complex unit circle, Eq. (12) is equivalent to assuming that X satisfies

Xt = μX +
∞∑

j=0
ψjεt−j, ψ0 = 1 (13)

for some absolutely summable sequence of real numbers {ψj}∞j=1. Hence, it is easy to see that
the normality hypothesis Eq. (1) holds if εt is normally distributed. Conversely, Eq. (1) implies
normality of the distribution of εt , which in turn implies Gaussianity of the causal linear
process X defined by Eq. (13).

Letting S = S(X1, . . . , Xn) be a statistic for testing the normality hypothesis Eq. (1),
the algorithm used to obtain an autoregressive sieve bootstrap approximation to the null
distribution of S can be described by the following steps:
S1. For some integer p � 1 (chosen as a function of n so that p increases with n but

at a slower rate), compute the pth order least-squares estimate (φ̂p1, . . . , φ̂pp) of the
autoregressive coefficients for X by minimizing

(n − p)−1
n∑

t=p+1

⎧⎨
⎩(Xt − X̄) −

p∑
j=1

φpj(Xt−j − X̄)

⎫⎬
⎭

2

(14)

S2. Given some initial values (X∗−p+1, . . . , X∗
0 ), generate bootstrap pseudo-observations

(X∗
1 , . . . , X∗

n) via the recursion

X∗
t − X̄ =

p∑
j=1

φ̂pj(X∗
t−j − X̄) + σ̂pε

∗
t , t = 1, 2, . . . (15)

where σ̂ 2
p is the minimum value of Eq. (14) and {ε∗

t } are independent random variables
each having the N (0, 1) distribution. Define the bootstrap analogue of S by the plug-in
rule as S∗ = S(X∗

1 , . . . , X∗
n) (i.e., by applying the definition of S to the bootstrap pseudo-

data).
S3. Repeat step S2 independently B times to obtain a collection of B replicates (S∗

1, . . . , S∗
B)

of S∗. The empirical distribution of (S∗
1, . . . , S∗

B) serves as an approximation to the null
distribution of S.

The (simulated) bootstrap P-value for a test that rejects the null hypothesis Eq. (1) for large
values of S is computed as the proportion of (S∗

1, . . . , S∗
B) greater than the observed value of S.

Hence, for a given nominal level α (0 < α < 1), the bootstrap test rejects H0 if the bootstrap
P-value does not exceed α. Equivalently, the bootstrap test of level α rejects H0 if S exceeds
the (�(B + 1)(1 − α)�)th largest of (S∗

1, . . . , S∗
B).

Some remarks about the bootstrap procedure are in order.
(i) The order p of the autoregressive sieve in step S1 may be selected from a suitable

range of values by means of the Akaike information criterion (AIC), so as to minimize
log σ̂ 2

p + 2p/(n − p). Under mild regularity conditions, a data-dependent choice of
p based on the AIC is asymptotically efficient (see, inter alia, Shibata 1980; Lee and
Karagrigoriou 2001; Poskitt 2007), and satisfies the growth conditions on the sieve
order that are typically required for the asymptotic validity of the sieve bootstrap for a
large class of statistics (Psaradakis 2016).

(ii) Although least-squares estimates (φ̂p1, . . . , φ̂pp, σ̂ 2
p ) of the parameters of the approxi-

mating autoregression are used in step S2 to construct X∗
t , asymptotically equivalent
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estimates, such as those obtained from the empirical Yule–Walker equations, may
alternatively be used. The Yule–Walker estimator is theoretically attractive because its
use guarantees that the bootstrap pseudo-observations (X∗

1 , . . . , X∗
n) are generated from

a causal (bootstrap) autoregressive process, but is known to be significantly biased in
small samples compared to the least-squares estimator (see, e.g., Tjøstheim and Paulsen
1983; Paulsen and Tjøstheim 1985).

(iii) By requiring ε∗
t in Eq. (15) to be normally distributed, the bootstrap pseudo-data {X∗

t }
are constructed in a way which reflects the normality hypothesis under test even though
X may not satisfy Eq. (1). This is important for ensuring that the bootstrap test has
reasonable power against departures from H0 (see, e.g., Lehmann and Romano 2005,
Sec. 15.6).

(iv) Some variations of the bootstrap procedure may be obtained by varying the way in
which the initial values (X∗−p+1, . . . , X∗

0 ) for the recursion Eq. (15) are chosen in step S2.
For instance, one possibility is to calculate (X∗−p+1, . . . , X∗

0 ) from the moving-average
representation of the fitted autoregressive model for Xt − X̄ (Paparoditis and Streitberg
1992). Another possibility is to set X∗

t = Xt+q for t � 0, where q is chosen randomly
from the set of integers {p, p + 1, . . . , n} (e.g., Poskitt 2008). In the sequel, we follow
the suggestion of Bühlmann (1997) and set X∗

t = X̄ for t � 0, generate n + n0
bootstrap replicates X∗

t according to Eq. (15), with n0 = 100, and then discard the
first n0 replicates to minimize the effect of initial values.

We conclude this section by noting that the linear structure assumed in Eq. (12) or Eq. (13)
may arguably be considered as somewhat restrictive. However, since nonlinear processes with
a Gaussian marginal distribution appear to be a rarity (cf. Tong 1990, Sec. 4.2), the assumption
of linear dependence is not perhaps unjustifiable when the objective is to test for marginal
normality.

Moreover, the results of Bickel and Bühlmann (1997) indicate that linearity may not be
too onerous a requirement, in the sense that the closure (with respect to certain metrics)
of the class of causal linear processes is quite large; roughly speaking, for any strictly
stationary nonlinear process, there exists another process in the closure of causal linear
processes having identical sample paths with probability exceeding 0.36. This also suggests
that the autoregressive sieve bootstrap is likely to yield reasonably good approximations
within a class of processes larger than that associated with Eq. (12) or (13). In fact, Kreiss,
Paparoditis, and Politis (2011) have demonstrated that the autoregressive sieve bootstrap is
asymptotically valid for a general class of statistics associated with strictly stationary, weakly
dependent, regular processes having positive and bounded spectral densities. Such processes
can always be represented in the form Eqs. (12) and (13), with {εt} being a strictly stationary
sequence of uncorrelated (although not necessarily independent) random variables. Then, the
autoregressive coefficients in Eq. (12) may also be thought of as the limit, as p tends to infinity,
of the coefficients of the best linear predictor (in a mean-square sense) of Xt −μX based on the
finite past (Xt−1 − μX , . . . , Xt−p − μX) of length p. The finite-predictor coefficients of X are
uniquely determined for each fixed integer p � 1 as long as σ 2

X > 0 andCov(Xt , Xt−τ ) → 0 as
τ → ∞ (cf. Brockwell and Davis 1991, Sec. 5.1), and converge to the corresponding infinite-
predictor coefficients as p → ∞ (cf. Pourahmadi 2001, Sec. 7.6; Kreiss, Paparoditis, and
Politis 2011).
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4. Simulation study

In this section we present and discuss the results of a simulation study examining the finite-
sample properties of the normality tests described earlier under various data-generating
mechanisms.

4.1. Experimental design

In the first set of experiments, we examine the performance of normality tests under different
patterns of dependence by considering artificial data generated according to the ARMA
models

M1: Xt = 0.8Xt−1 + εt ,
M2: Xt = 0.6Xt−1 − 0.5Xt−2 + εt ,
M3: Xt = 0.6Xt−1 + 0.3εt−1 + εt .

Here, and throughout this section, {εt} are i.i.d. random variables the common distribution
of which is either standard normal (labelled N in the various tables) or generalized lambda
with quantile function Qε(w) = λ1 + (1/λ2){wλ3 − (1 − w)λ4}, 0 < w < 1, standardized to
have zero mean and unit variance (see Ramberg and Schmeiser 1974). The parameter values
of the generalized lambda distribution used in the experiments are taken from Bai and Ng
(2005) and can be found in Table 1, along with the corresponding coefficients of skewness
and kurtosis; the distributions S1–S3 are symmetric, whereas A1–A4 are asymmetric.

In addition, we consider artificial data generated according to the transformation model

M4: Xt = 	−1(Fξ (ξt)), ξt = θ |ξt−1| + εt , εt ∼ N (0, 1), θ = 0.5,

where Fξ is the distribution function of ξt . The process {Xt} obtained from the threshold
autoregressive process {ξt} through the composite function 	−1 ◦ Fξ does not admit the
representation Eq. (12) or (13) (with respect to i.i.d. innovations), but satisfies the null
hypothesis since Xt ∼ N (0, 1) for each t. Note that {ξt} is strictly stationary with

Fξ (u) = {
2(1 − θ2)/π

}1/2
∫ u

−∞
exp

{−(1 − θ2)x2/2
}
	(θx)dx, −∞ < u < ∞

for all |θ | < 1 (see Anděl and Ranocha 2005).
The effect of nonlinearity on the properties of the tests is explored further in a second set

of experiments by using artificial data from the models

M5: Xt = (0.9Xt−1 + εt)I(|Xt−1| � 1) − (0.3Xt−1 + 2εt)I(|Xt−1| > 1),

Table 1. Innovation distributions.
λ1 λ2 λ3 λ4 Skewness Kurtosis

N – – – – 0.0 3.0
S1 0.000000 −1.000000 −0.080000 −0.080000 0.0 6.0
S2 0.000000 −0.397912 −0.160000 −0.160000 0.0 11.6
S3 0.000000 −1.000000 −0.240000 −0.240000 0.0 126.0
A1 0.000000 −1.000000 −0.007500 −0.030000 1.5 7.5
A2 0.000000 −1.000000 −0.100900 −0.180200 2.0 21.1
A3 0.000000 −1.000000 −0.001000 −0.130000 3.2 23.8
A4 0.000000 −1.000000 −0.000100 −0.170000 3.8 40.7
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M6: Xt = (0.8Xt−1 + εt){1 − �(Xt−1)} − (0.8Xt−1 + 2εt)�(Xt−1),
M7: Xt = ηtεt , η2

t = 0.05 + 0.1X2
t−1 + 0.85η2

t−1,
M8: Xt = 0.7Xt−2εt−1 + εt ,

where �(x) = 1/(1 + e−x) is the standard logistic function and I(A) denotes the indicator of
the event A. M5 is a threshold autoregressive model, M6 is a smooth-transition autoregressive
model, M7 is a generalized autoregressive conditionally heteroskedastic model, and M8 is
a bilinear model. In all four cases, {Xt} does not admit the representation Eq. (12) or (13);
furthermore, the distribution of Xt is non-Gaussian even if εt is normally distributed.

For each design point, 1,000 independent realizations of {Xt} of length 100 + n, with
n ∈ {100, 200}, are generated. The first 100 data points of each realization are then discarded
in order to eliminate start-up effects and the remaining n data points are used to compute
the value of the test statistics defined in Eqs. (2)–(11). In the case of bootstrap tests, the
order of the autoregressive sieve is determined by minimizing the AIC in the range 1 �
p � �10 log10 n�, while the number of bootstrap replications is B = 199. (We note that
using a larger number of bootstrap replications did not change the results substantially. Hall
(1986) and Jöckel (1986) provide theoretical explanations of the ability of simulation-based
inference procedures to yield good results for relatively small values of the simulation size).

4.2. Simulation results

The Monte Carlo rejection frequencies of normality tests at the 5% significance level (α =
0.05) are reported in Tables 2–9. Asymptotic tests (based on JB, BN, LV , BM, and H) rely
on critical values from the relevant chi-square distribution; bootstrap tests use critical values
obtained by an autoregressive sieve bootstrap procedure. The results over all design points
which do not satisfy the null hypothesis are summarized graphically in the form of the box
plot of the empirical rejection frequencies shown in Figure 1 (bootstrap tests are indicated by
the subscript B).

Inspection of the results in Tables 2–4 (under Gaussian innovations) and in Table 5
reveals that the test based on H suffers from severe level distortion across all four data-
generating mechanisms when asymptotic critical values are used. Among the remaining
asymptotic tests, LV has an overall advantage under the null hypothesis for both of the sample
sizes considered. The BN and BM tests tend to be too liberal and, rather surprisingly, do
not perform substantially better than the JB test, which relies on the assumption of i.i.d.
observations. A possible explanation for the unsatisfactory level performance of the tests
based on BN and BM may lie with the kernel estimators of the relevant long-run covariance
matrices that are used in their construction. Inference procedures based on such estimators
are widely reported to have poor small-sample properties, and related tests are often found
to exhibit substantial level distortions in a variety of settings (see, e.g., den Haan and Levin
1997; Müller 2014). As expected perhaps, bootstrap tests are generally more successful than
asymptotic tests at controlling the discrepancy between the exact and nominal probabilities of
Type I error. The empirical rejection frequencies of bootstrap tests are insignificantly different
from the nominal 0.05 value in the vast majority of cases.

The results in Tables 2–4 (under non-Gaussian innovations) and in Tables 6–9 show that
the bootstrap versions of the JB and LV tests tend to outperform all other tests in terms of
empirical power, albeit only marginally in some cases, regardless of the dependence structure
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Figure 1. Empirical Rejection Frequencies of Normality Tests: Power. Note: The top and bottom of each blue
box indicates the 25th and 75th percentile, respectively, of the empirical rejection frequencies, the black
diamond indicates the mean value, and the whiskers indicate the 10th and 90th percentiles.

in the data and the distribution of the innovations. In particular, as can be easily seen in
Figure 1, for processes with a non-Gaussian marginal distribution, the bootstrap JB and LV
tests have the highest average rejection frequencies (indicated by black diamonds) across all
tests, and smaller interquartile range (edges of coloured areas) than the asymptotic LV test.
However, keeping in mind computational aspects and level accuracy, the latter test offers
an attractive alternative to bootstrap tests. Among tests based on the empirical distribution
function, which are also competitive in terms of power, the AD and CM tests tend to
have a slight advantage over the KS test, and perform quite similarly to the EP test based
on the empirical characteristic function. Even though the coefficients that are used in the
construction of the SW statistic are optimal only for i.i.d. data, the bootstrap version of
the test is quite successful at detecting departures from normality, and is marginally more
powerful than the AD, CM and EP tests for some design points. The rejection frequencies of
the asymptotic and bootstrap BN and BM tests have distributions which are highly positively
skewed (cf. Figure 1), which means that the tests are powerful only for some design points.
Rather unsurprisingly, the rejection frequencies of tests improve with increasing skewness
and leptokurtosis in the innovation distribution, as well as with an increasing sample size.
It is worth noting that, although the asymptotic versions of some tests may appear in some
cases to have similar or even higher empirical power than the corresponding bootstrap tests,
such comparisons are not straightforward because asymptotic tests do not generally control
the probability of Type I error as well as bootstrap tests do. (The asymptotic test based on H
is not included in Figure 1 because of its excessive level distortion).

Finally, the simulation results reveal that deviations from the linearity assumptions which
underline the autoregressive sieve bootstrap procedure do not have an adverse effect on the
properties of bootstrap tests. Such tests generally work well even for data that are generated
by processes which are not representable as in Eqs. (12) or (13). As can be seen in Table 5, in
the case of artificial time series from M4, the marginal distribution of which is Gaussian,
most bootstrap tests have rejection frequencies that do not differ substantially from the
nominal level (the AD and CM tests have a tendency to over-reject). Similarly, as can be
seen in Tables 6–9, the bootstrap versions of tests other than BN and BM have high rejection
frequencies for data with a non-Gaussian marginal distribution generated according to the
non-linear models M5–M8.
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5. Summary

This paper has considered the problem of testing for normality of the one-dimensional
marginal distribution of a strictly stationary and weakly dependent stochastic process. We
have examined the properties of nine normality tests, only some of which have been designed
to be robust with respect to dependence in the data. Since conventional large-sample approxi-
mations to the null distributions of some of the test statistics are either unknown or inaccurate
under dependence, we have explored how an autoregressive sieve bootstrap procedure may
be used to obtain P-values and/or critical values for the tests. An extensive Monte Carlo study
has revealed that the bootstrap version of the classical skewness–kurtosis test provides the
best overall performance across the asymptotic and bootstrap tests investigated. The Lobato–
Velasco modification of the cumulant-based test is a good alternative among tests that rely on
asymptotic critical values.
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